3.536 \(\int \frac{\cot ^3(c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\)

Optimal. Leaf size=194 \[ \frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{5/2} d}+\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d} \]

[Out]

((8*a^2 - 3*b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(4*a^(5/2)*d) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/S
qrt[a - I*b]]/(Sqrt[a - I*b]*d) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/(Sqrt[a + I*b]*d) + (3*b*Cot
[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(4*a^2*d) - (Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]])/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.57718, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {3569, 3649, 3654, 12, 3539, 3537, 63, 208, 3634} \[ \frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{5/2} d}+\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((8*a^2 - 3*b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(4*a^(5/2)*d) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/S
qrt[a - I*b]]/(Sqrt[a - I*b]*d) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/(Sqrt[a + I*b]*d) + (3*b*Cot
[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(4*a^2*d) - (Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]])/(2*a*d)

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3654

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*ta
n[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*x])^n*Simp[a*(A - C) - (A*b - b*
C)*Tan[e + f*x], x], x], x] + Dist[(A*b^2 + a^2*C)/(a^2 + b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^
2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{\cot ^3(c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx &=-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}-\frac{\int \frac{\cot ^2(c+d x) \left (\frac{3 b}{2}+2 a \tan (c+d x)+\frac{3}{2} b \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 a}\\ &=\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}+\frac{\int \frac{\cot (c+d x) \left (\frac{1}{4} \left (-8 a^2+3 b^2\right )+\frac{3}{4} b^2 \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}+\frac{\int \frac{2 a^2 \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 a^2}+\frac{1}{8} \left (-8+\frac{3 b^2}{a^2}\right ) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}-\frac{\left (8-\frac{3 b^2}{a^2}\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{8 d}+\int \frac{\tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}+\frac{1}{2} i \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx-\frac{1}{2} i \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx-\frac{\left (8-\frac{3 b^2}{a^2}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{4 b d}\\ &=\frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{5/2} d}+\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}+\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=\frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{5/2} d}+\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}-\frac{i \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=\frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{5/2} d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{\sqrt{a-i b} d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{\sqrt{a+i b} d}+\frac{3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 a d}\\ \end{align*}

Mathematica [A]  time = 3.03466, size = 203, normalized size = 1.05 \[ \frac{-\frac{4 a^2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{-b^2}}}\right )}{\sqrt{a-\sqrt{-b^2}}}-\frac{4 a^2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+\sqrt{-b^2}}}\right )}{\sqrt{a+\sqrt{-b^2}}}+\frac{\left (8 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a}}-2 a \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}+3 b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(((8*a^2 - 3*b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] - (4*a^2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]
/Sqrt[a - Sqrt[-b^2]]])/Sqrt[a - Sqrt[-b^2]] - (4*a^2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sqrt[-b^2]]])/
Sqrt[a + Sqrt[-b^2]] + 3*b*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]] - 2*a*Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]]
)/(4*a^2*d)

________________________________________________________________________________________

Maple [C]  time = 1.207, size = 58397, normalized size = 301. \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3/(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 9.47988, size = 11073, normalized size = 57.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(16*sqrt(2)*((a^5 + a^3*b^2)*d^5*cos(d*x + c)^2 - (a^5 + a^3*b^2)*d^5)*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/
((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4)*arcta
n(-((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3 + a*b
^2)*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^
2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d
^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b
^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 +
a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*
x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4
))^(3/4) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*
d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*sin(d*x
+ c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))
^(3/4))/b^2) + 16*sqrt(2)*((a^5 + a^3*b^2)*d^5*cos(d*x + c)^2 - (a^5 + a^3*b^2)*d^5)*sqrt(-((a^3 + a*b^2)*d^2*
sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4
)*arctan(((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3
 + a*b^2)*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4
+ 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 +
b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a
^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((
a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*
sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^
2)*d^4))^(3/4) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 +
 b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*si
n(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)
*d^4))^(3/4))/b^2) + 4*sqrt(2)*(a^3*d*cos(d*x + c)^2 - a^3*d + (a^4*d^3*cos(d*x + c)^2 - a^4*d^3)*sqrt(1/((a^2
 + b^2)*d^4)))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4
)*log(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d
^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2
)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c
))/cos(d*x + c)) - 4*sqrt(2)*(a^3*d*cos(d*x + c)^2 - a^3*d + (a^4*d^3*cos(d*x + c)^2 - a^4*d^3)*sqrt(1/((a^2 +
 b^2)*d^4)))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4)*
log(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4
))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*
d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))
/cos(d*x + c)) + ((8*a^2 - 3*b^2)*cos(d*x + c)^2 - 8*a^2 + 3*b^2)*sqrt(a)*log(-(8*a*b*cos(d*x + c)*sin(d*x + c
) + (8*a^2 - b^2)*cos(d*x + c)^2 + b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c)*sin(d*x + c))*sqrt(a)*sqrt((a*
cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/(cos(d*x + c)^2 - 1)) - 4*(2*a^2*cos(d*x + c)^2 - 3*a*b*cos(d*x
+ c)*sin(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/(a^3*d*cos(d*x + c)^2 - a^3*d), -1/4*
(4*sqrt(2)*((a^5 + a^3*b^2)*d^5*cos(d*x + c)^2 - (a^5 + a^3*b^2)*d^5)*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 +
b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4)*arctan(-((a^4
 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3 + a*b^2)*d^2*
sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 +
b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sq
rt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4)
)*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d
^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/
cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4)
 + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) +
(a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/co
s(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4))/
b^2) + 4*sqrt(2)*((a^5 + a^3*b^2)*d^5*cos(d*x + c)^2 - (a^5 + a^3*b^2)*d^5)*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((
a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4)*arctan(
((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3 + a*b^2)
*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b
^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)
))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)
*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b
^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x +
 c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^
(3/4) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4
)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*sin(d*x + c
))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3
/4))/b^2) + sqrt(2)*(a^3*d*cos(d*x + c)^2 - a^3*d + (a^4*d^3*cos(d*x + c)^2 - a^4*d^3)*sqrt(1/((a^2 + b^2)*d^4
)))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4)*log(((a^2
 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*
x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(
1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x
+ c)) - sqrt(2)*(a^3*d*cos(d*x + c)^2 - a^3*d + (a^4*d^3*cos(d*x + c)^2 - a^4*d^3)*sqrt(1/((a^2 + b^2)*d^4)))*
sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4)*log(((a^2 + b
^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x +
c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((
a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)
) + ((8*a^2 - 3*b^2)*cos(d*x + c)^2 - 8*a^2 + 3*b^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*cos(d*x + c) + b*sin(d*x
 + c))/cos(d*x + c))/a) - (2*a^2*cos(d*x + c)^2 - 3*a*b*cos(d*x + c)*sin(d*x + c))*sqrt((a*cos(d*x + c) + b*si
n(d*x + c))/cos(d*x + c)))/(a^3*d*cos(d*x + c)^2 - a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{3}{\left (c + d x \right )}}{\sqrt{a + b \tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)**3/sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (d x + c\right )^{3}}{\sqrt{b \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^3/sqrt(b*tan(d*x + c) + a), x)